# 既存 RC 造建築物の扁平梁外付けフレームによる耐震補強工法の研究 その1 扁平梁外付けフレームの十字形接合部の梁曲げ破壊実験

| 耐震補強 | 外付けフレーム | ポリマーセメントモルタル |
|------|---------|--------------|
|      |         |              |

柱梁接合部 梁曲げ破壊

#### 1. はじめに

著者らは既存 RC 造建築物の外付けフレームによる耐震 補強工法の開発研究を行ってきている<sup>1)~3)</sup>。本工法の特徴 は柱梁接合部に高強度のプレミックスタイプのポリマー セメントモルタル (PCM)を用いることにより、高強度コ ンクリートが容易に調達できることにある。

本研究は、既存の RC 造建築物のフレームに扁平梁外付 けフレームを直付けして補強を行うものである。扁平梁は、 従来の梁より薄いので開口部の邪魔にならないという特 徴がある。本報(その1)では、十字形柱梁接合部の梁曲 げ破壊実験について報告する。

表1 試験体一覧

| 試験体 | 柱      |               |               | 梁          |                  |               |            |
|-----|--------|---------------|---------------|------------|------------------|---------------|------------|
|     | 断面(mm) | 主筋            | 帯筋            | 断面(mm)     | 主筋               | あばら筋          |            |
| ſ   |        |               |               | 3-U7.1@50  |                  |               | 4-U7.1@50  |
| l   | J-9    | 300 × 400     | 14-D16(SD390) | (SBPD1275) | $600 \times 250$ | 18-D16(SD490) | (SBPD1275) |
|     |        |               | (pw=0.8%)     |            |                  | (pw=0.53%)    |            |
| ſ   | L-1    | 220 × 250     | 9-D10(SD400)  | 2-D13@50   | 220 × 400        | 6-010(00400)  | 2-010@100  |
| L   | J-*1   | 320 ~ 330 8-1 | 8-019(30490)  | (pw=1.59%) | 320 × 400        | 0-019(30490)  | 2-010@100  |

| 試験体 | 使用部位      | 材料             | 圧縮強度<br>(N/mn <sup>®</sup> ) | ヤング係数<br>(kN/mnの) |
|-----|-----------|----------------|------------------------------|-------------------|
| 9—J | 下側柱および梁部材 | 普通コンクリート       | 43.7                         | 34.4              |
|     | 上側柱部材     | 上側柱部材 普通コンクリート |                              | 35.9              |
|     | 柱梁接合部     | PCM            | 94.7                         | 28.9              |
| J-1 | 柱梁        | 普通コンクリート       | 35.0                         | 26.1              |
|     | 柱梁接合部     | PCM            | 95.1                         | 28.7              |

表2 セメント系材料試験結果

| 準会員 | ○渡邊彩奈*1 | 正会員 | 稻井栄一*2 |
|-----|---------|-----|--------|
| 正会員 | 秋田知芳*3  | 非会員 | 北原敬佑*4 |
| 正会員 | 夏目実穂*4  | 正会員 | 尾崎純二*5 |
| 正会員 | 河本孝紀*5  |     |        |

#### 2. 試験体

試験体は、1/2 縮尺の J-9 試験体1体である。試験体一覧 を表1に、試験体形状および配筋を図1に、使用材料の試 験結果を表2および表3に示す。比較対象として、既往の 研究<sup>1)</sup>で実施した標準的な梁を用いた J-1 の試験体もあわ せて示す。J-9 試験体の柱梁の形状は、梁幅比(柱幅に対 する梁幅の比)が2で、梁が柱に対して偏心して接合され た試験体とし、柱の寸法は b×D=300×400mm、梁の寸法は b×D=600×250mm としている。梁の主筋は 18-D16 (SD490)、 あばら筋は 4-U7.1@50(SBPD1275)とし、柱梁接合部の柱よ り張り出している梁部分(以下、張出部)においては、張 出部の主筋をせん断補強筋で囲うようにコの字型に折り 曲げた鉄筋(以下、コの字型補強筋)を配筋している。コ の字型補強筋は、張出部の上下梁主筋に結束し、その先端 の定着により柱梁接合部へと定着した。柱の主筋は 14-D16(SD390)、帯筋は 3-U7.1@50(SBPD1275)としてい る。柱梁部材は設計基準強度 Fc=36N/mm<sup>2</sup>のコンクリート

| 試験体 | 使用部位        | 材種                 | 降伏強度<br>(N/mn <sup>®</sup> ) | 降伏時<br>ひずみ<br>( <i>μ</i> ) | 引張強度<br>(N/mẩ) | ヤング係数<br>(kN/mm) |  |
|-----|-------------|--------------------|------------------------------|----------------------------|----------------|------------------|--|
| J–9 | 柱主筋         | D16(SD390)         | 517                          | 2244                       | 693            | 194              |  |
|     | 梁主筋         | D16(SD490)         | 586                          | 2631                       | 785            | 188              |  |
|     | 柱梁補強筋       | U7.1<br>(SBPD1275) | 1515                         | 7807                       | 1539           | 193              |  |
|     | ⊐の字型<br>補強筋 | D13(SD345)         | 413                          | 2046                       | 592            | 200              |  |
| J-1 | 柱主筋         | D10(SD400)         | 550                          | 2140                       | 700            | 175              |  |
|     | 梁主筋         | D19(3D490)         | 555                          | 3149                       | 723            | 175              |  |
|     | 帯筋          | D13(SD345)         | 407                          | 2155                       | 556            | 189              |  |
|     | あばら筋        | D10(SD295)         | 375                          | 2037                       | 504            | 184              |  |

表3 鉄筋の材料試験結果



Study on the Seismic Retrofitting Method of Existing Reinforced Concrete Buildings by External Frames with flat beam Part.1 Tests of Beam-column-joint in Wide Beam-Column

WATANABE Ayana, INAI Eiichi, AKITA Tomofusa, KITAHARA Keisuke, NATSUME Miho, OSAKI Junji. and KAWAMOTO Takanori

を打設し、柱梁接合部は設計基準強度 Fm=60N/mm<sup>2</sup>の PCM を打設している。

J-1 試験体は 1/2 縮尺であり、柱梁部は Fc=33N/mm<sup>2</sup>の コンクリートを、柱梁接合部は Fm=60N/mm<sup>2</sup>の PCM を打 設している。施工上の観点から接合部近傍の梁の一部にも PCM を使用している。両試験体は、破壊形式が梁主筋の曲 げ降伏を想定した試験体とする。また、柱梁接合部のせん 断強度は十分余裕があるものになっている。

#### 3. 加力方法

図2に加力装置を示す。反力ビーム上に設置したピンに 柱脚を、左右梁両端のピンにロードセルを接続し、柱頭に 水平加力ジャッキ、パンタグラフ形式の面外拘束装置を接 続する。また、梁端部片側にもパンタグラフ形式の面外拘 束装置を接続する。加力は、水平ジャッキにより正負繰り 返しの水平力を載荷する。なお、試験体は外付けフレーム



(a) J-9 試験体

の柱梁接合部の部分架構を取り出したものであるため,軸 力はゼロとした。

制御は、試験体に設置した十字形の計測治具(上端と下端を加力治具にピン接合)により求められる層間変形角 R による変位制御とする。層間変形角は、梁両先端部と計測 治具の左右端部との鉛直変位の差(Rδy-Lδy)を梁スパン (L=2500mm)で除して求める。加力スケジュールは R= $\pm 0.125 \times 10^{-2}$ rad.を1サイクル、R= $\pm 0.20 \times 10^{-2}$ rad.、 R= $\pm 0.40 \times 10^{-2}$ rad.、R= $\pm 0.67 \times 10^{-2}$ rad.、R= $\pm 1.00 \times 10^{-2}$ rad.、 R= $\pm 1.50 \times 10^{-2}$ rad.、R= $\pm 2.00 \times 10^{-2}$ rad.、 R= $\pm 4.00 \times 10^{-2}$ rad. を目安として各々2サイクルずつ加力を行った。

#### 4. 実験結果

図3に最終ひび割れ状況を、図4に柱水平力Q-層間変 形角Rの関係を、図5に柱主筋および梁主筋のひずみ分布 を示す。Qは柱に作用する水平力で水平ジャッキの荷重値 である。

#### 4.1 J-9 試験体

1回目のR=±0.20×10<sup>-2</sup>rad.の加力サイクル時に梁のコンク リートに曲げひび割れが発生した。なお、梁のコンクリー トに曲げひび割れが発生した加力サイクルのピーク時の 水平力は、正側で 55.2kN、負側で-55.2kN であった。2回 目の R=-0.20×10<sup>-2</sup>rad.の加力サイクル時および 1回目の R=+0.40×10<sup>-2</sup>rad.の加力サイクル時に柱梁接合部の PCM に 斜めひび割れが発生した。その後、1回目のR=±0.40×10<sup>-2</sup>rad. の加力サイクル時に梁のコンクリートと PCM の境界およ び柱コンクリートにそれぞれ曲げひび割れが発生した。

2回目のR=-0.40×10<sup>-2</sup>rad.の加力サイクル時および1回目 のR=+0.67×10<sup>-2</sup>rad.の加力サイクル時に柱梁接合部の張出 部上下面に斜めひび割れが発生し、左梁の下端筋の柱内を 通る主筋のうち1本の主筋ひずみが降伏ひずみに達した。 その後、1回目のR=±1.50×10<sup>-2</sup>rad.の加力サイクル時に柱内 を通る梁主筋のひずみがそれぞれ降伏ひずみに達した。ま た、このとき柱梁接合部の境界面における柱主筋のうち、 張出側における主筋のひずみが降伏ひずみに達した。その



(b) J-1 試験体

図3 試験体の最終ひび割れ状況



後、柱梁部材の曲げひび割れおよび柱梁接合部および張出 部上下面の斜めひび割れが発生または伸展し、1回目の  $R=\pm3.00\times10^{-2}rad.$ の加力サイクルのピーク時に正負ともに 最大耐力を迎え、その時の水平力は正側で 177.0kN、負側 で -172.5kN であった。なお、最大耐力を迎えた  $R=\pm3.00\times10^{-2}rad.$ の加力サイクル時には柱外に配置した梁 主筋のひずみも降伏ひずみに達した。

最大耐力後の水平力は、ほぼ低下せず、1回目の R=±4.00×10<sup>2</sup>rad.の加力サイクル時に柱梁接合部の斜めひ び割れが大きく開き、PCMの外側がはらみ出しおよび剥落 した。なお、同サイクルピーク時の水平力は正側で171.5kN、 負側で-172.5kNであった。その後、2回目のR=±4.00×10<sup>2</sup>rad. の加力サイクル時に梁の長手方向に張出部境界に沿った 段差が生じ、同サイクルピーク時の水平力が低下した。そ の時の水平力は正側で147.4kN、負側で-154.0kNであり、 最大耐力の 80% ( $0.8eQ_u$ ) 程度を保持していた。水平力が 最大耐力の 80% ( $0.8eQ_u$ ) まで保持した時の層間変形角と 安全限界変形角を考えると、正負とも  $R=\pm3.00\times10^{-2}$ rad.の繰 返し時であり、J-9 試験体は F=3.09 程度の変形性能を有し ていると判断する。J-9 試験体の破壊形式は、柱梁接合部 内に位置する主筋が降伏した後に試験体の剛性が低下し たこと、またその時の柱主筋における引張有効鉄筋の一部 および柱梁接合部のせん断補強鉄筋が降伏ひずみに達し ていなかったことより、梁曲げ破壊であると判断する。

#### 4.2 J-1 試験体

1回目の R=±0.20×10<sup>-</sup> <sup>2</sup>rad.の加力サイクルで梁のコンク リートと PCM の打継部に曲げひび割れが発生した。1回目 の R=±0.67×10<sup>-</sup> <sup>2</sup>rad.の加力サイクルにおいて柱梁接合部に せん断ひび割れが発生した。その後、柱梁部材の曲げひび

表4 各部材の終局耐力計算値と実験値

| =+ ==> /+ | 計算値                   |                       |                       |                       |                      |        | 実験値                  | 中静体 /乱答体             |           |
|-----------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|--------|----------------------|----------------------|-----------|
| 記与 14     | cQsu kN <sup>*1</sup> | cQmu kN <sup>*2</sup> | bQsu kN <sup>*3</sup> | bQmu kN <sup>*4</sup> | jQu kN <sup>*5</sup> | 破壊形式   | cQu kN <sup>*6</sup> | eQu kN <sup>*7</sup> | 美駛10/計昇10 |
| I_0       | 370.4(上柱)             | 236.4(上柱)             | 256 /                 | 2147                  | 210.2                | 沙山になった | 2147                 | 177.0                | 0.82      |
| 0-9       | 361.8(下柱)             | 236.4(下柱)             | 350.4                 | 214.7                 | 219.0                | 未回い吸域  | 214.7                | 177.0                | 0.02      |
| J-1       | 350                   | 194.4                 | 297                   | 159                   | 358.9                | 梁曲げ破壊  | 159                  | 179.0                | 0.92      |

\*1 cQ\_su: 注柱过ん断耐力時水平力 \*2 cQ\_su: 注曲げ耐力時水平力 \*3 bQsu: 梁世ん断耐力時水平力 \*4 bQmu: 梁曲げ耐力時水平力 \*5 <sub>i</sub>Q<sub>u</sub>: 柱梁接合部せん断耐力時水平力 \*6 <sub>c</sub>Q<sub>u</sub>: 水平耐力計算値 \*7 <sub>e</sub>Q<sub>u</sub>:水平耐力実験值

割れおよび柱梁接合部のせん断ひび割れが発生及び進展 し、1 回目の R=±2.0×10<sup>-2</sup>rad.の加力サイクルの R=±1.59×10<sup>-</sup> 2rad.で右梁の下端主筋がコンクリートとPCM の打継部付近で引張降伏ひずみに達し、剛性が低下した。 梁主筋の降伏以降は水平力の増大はほとんどみられなく なり、1回目の R=±3.0×10<sup>-2</sup> rad.の加力サイクルの正側ピー ク時に正側での最大耐力 179.0kN に達した。また、左梁 の上端主筋がコンクリートと PCM の打継部付近で引張降 伏した。1回目の R=±4.39×10<sup>-2</sup>rad.の加力サイクルの負側 ピーク時に負側での最大耐力-167.0kNに達した。

なお、R=±4.39×10<sup>-</sup> 2rad.サイクルまで柱梁接合部のせん 断破壊、鉄筋の定着破壊、部材のせん断破壊は見られなか った。柱主筋は降伏ひずみをこえていないことから、試験 体の最大耐力は、梁主筋の降伏で決まったと考えられ、試 験体の破壊形式は梁曲げ破壊であると判断される。水平力 が最大耐力の 80%である-133.6kN まで低下した時の層間 変形角を安全限界変形角と考えると、正負とも  $R=3.0\times10^{-2}$ rad. 2 cases.

## 4.3 J-9 試験体と J-1 試験体の比較

図5(i)のひずみ分布から分かるように、J-9試験体の 梁主筋について、梁の張出部端から2本の鉄筋を除いて、 全ての鉄筋が降伏した。J-9 試験体の柱主筋については、 内側2本(張出部反対側)を除き、全ての鉄筋が降伏する 結果となった。J-1 試験体の柱主筋については、全ての主 筋が降伏しなかった。また、J-9 試験体の方が J-1 試験体に 比べ、早い時期に柱梁接合部にひび割れが入った。J-9 試 験体は J-1 試験体に比べ、柱側面に曲げひび割れが多く生 じていた。

#### 各部材の終局耐力の検討 5

両試験体の柱、梁、柱梁接合部の終局耐力の計算値と実 験値を比較して表4に示す。算定に用いた各部材の耐力式 を (1)式~(5)式に示す。 柱の曲げ耐力4)

$${}_{c}M_{u} = 0.8 \cdot a_{t} \cdot \sigma_{y} \cdot D + 0.5N \cdot D \left(1 - \frac{N}{b \cdot D \cdot \sigma_{B}}\right)$$
(1)

柱のせん断耐力 4)

$${}_{c}\mathcal{Q}_{su} = \left\{ \frac{0.053 \cdot p_{t}^{0.23} (18 + \sigma_{B})}{M / (\mathcal{Q} \cdot d) + 0.12} + 0.85 \sqrt{p_{w} \cdot \sigma_{wy}} + 0.1 \cdot \sigma_{0} \right\} bj \quad (2)$$

梁の曲げ耐力4)

$$_{b}M_{u} = 0.9 \cdot a_{t} \cdot \sigma_{y} \cdot d$$
 (3)

$${}_{c}\mathcal{Q}_{su} = \left\{ \frac{0.053 \cdot p_{c}^{0.23} (18 + \sigma_{B})}{M/(O \cdot d) + 0.12} + 0.85 \sqrt{p_{w} \cdot \sigma_{wy}} \right\} bj$$
(4)

柱梁接合部のせん断耐力 4)

 $_{j}Q_{u} = \kappa \cdot \varphi \cdot F_{j} \cdot b_{j} \cdot D_{j}$ (5)

$$F_i = 0.8 \cdot \sigma_B^{0.7} \tag{6}$$

σ<sub>B</sub>: PCM あるいは高強度コンクリートの圧縮強度

表4のJ-9試験体の<sub>b</sub>Qmuの値は、梁主筋が全て降伏した と仮定して計算したものである。実験時の梁主筋の降伏状 況に基づいて計算すると、<sub>b</sub>Qmuの値は 202.9kN となった。

## 6. まとめ

十字形柱梁接合部の梁曲げ破壊実験を行い、得られた主 要な知見について以下に記す。

- ① J-9 試験体は J-1 試験体と同等の良好な変形性能を有し ている。
- ② J-9 試験体では梁主筋は全て降伏するのではなく、梁 張出部端から2本の梁主筋は降伏しなかった。
- 両試験体の破壊形式は梁の主筋降伏による曲げ破壊で あったが、J-9 試験体では柱主筋の大部分が降伏してい た。

#### 参老文献

- 1) 清水隆行、稲井栄一、柿原巧弥、原山賢、河本孝紀:既存 RC 造建築物の外付 けフレームによる耐震補強工法の研究 (その1) 補強架構の柱梁接合部実 験 日本建築学会中国支部研究報告集 37, pp.153 - 156, 2014.3
- 2) 徳田麻理子、岩崎敬正、川端康平、稲井栄一、柿原巧弥、原山賢、河本孝紀: 既存 RC 造建築物の外付けフレームによる耐震補強工法の研究 (その 2)~ (その4) 日本建築学会中国支部研究報告集 37, pp.157 - 168, 2014.3
- 3) 脇田知英、田染賢二、稲井栄一、柿原巧弥、原山賢、河本孝紀:RC 造建築物 の外付けフレームによる耐震補強工法の研究(その5)~(その6)日本建 築学会中国支部研究報告書 38,pp.209-216,2015.3
- 4) 国土交通省住宅局建築指導課、国土交通省国土技術政策総合研究他監修: 2007 年度版建築物の構造関係技術基準解説書 2007.8

\*1 山口大学工学部感性デザイン工学科 学生 Student, Dept. of Perceptual Sciences and Design Eng., Faculty of Eng., Yamaguchi Univ.

- \*4 宇部興産(株)建材資材カンパニー

\*2 山口大学大学院創成科学研究科 教授・博士(工学) Prof, Graduate School of Sci. and Technology for Innovation, Yamaguchi Univ., Dr. Eng. \*3 山口大学大学院創成科学研究科 講師·博士(工学) Lecturer, Graduate School of Sci. and Technology for Innovation, Yamaguchi Univ., Dr. Eng. Construction Materials Div., Ube Industries .LTD.

\*5 宇部興産(株)建材資材カンパニー・博士(工学) Construction Materials Div., Ube Industries .LTD., Dr. Eng.