柱梁接合部のせん断余裕度が異なる CES 造建物の等価1自由度系応答値に関する研究

CES 構造	仕口パネル	せん断余裕度
荷重増分解析	応答値	地震応答評価

1.はじめに

CES(Concrete Encased Steel)構造とは、鉄骨に繊維補強コ ンクリート(FRC)を打設して構成される新しい構造形式で、 近年では次世代の合成構造システムとして開発がなされ ている¹⁾。現在、CES構造の耐震性能評価法の提案に向け 活動が行われている²⁾。既往の研究^{3)、4)}では、CES 造の試 設計建物について、提案されている評価法に基づいて評 価を行い、評価法の適用性を検討すると共に、柱梁接合 部(以下、接合部)のモデル化が耐震性能に及ぼす影響につ いて検討した。しかし、柱梁接合部を剛とみなせる条件 については十分な検討がなされていない。また、接合部 のモデル化が応答値に及ぼす影響についても検討されて いない。そこで本研究では、接合部せん断余裕度を変化 させたモデルの荷重増分解析を行い、接合部せん断余裕 度に着目し検討を行った。また、等価1自由度系の応答 値を算定し接合部せん断余裕度との関係を明らかにした。 2. 耐震性能評価法

CES構造性能評価法の作成に当たって、柱および梁、 柱梁接合部、耐震壁、架構の構造実験結果 ^{5)-7)など}に基づ いて限界耐力計算による構造性能評価に資する技術資料 の整備が行われている。本研究の柱梁接合部に関する評 価法は **CES** 柱梁接合部における性能評価 ²⁾に沿うものと する。柱梁接合部の復元力特性を図 1 に示す。ここで、 *Q_{jc}*はせん断ひび割れ耐力、*Q_{ju}*は終局せん断耐力、*y_{jc}*は せん断ひび割れ時のせん断変形、*y_{ju}*は終局せん断耐力時 のせん断変形、GA は初期剛性である。なお、柱梁接合部 は、せん断ひび割れ点、せん断降伏点を有するトリリニ アの復元力特性でモデル化することを原則とするが、柱 梁接合部が十分剛であるとみなせる場合は剛域と仮定し てよいものとする。

準会員	○高橋一希*1	正会員	秋田知芳*2
正会員	稻井栄一*3		

3.解析用建物

解析用建物は、文献 8)で用いられている直接基礎の CES 造の地上 13 階建て事務所ビルを使用した。建築面 積は 775 ㎡、延べ床面積は 10,075 ㎡、最高高さは 52.5m、基準階高さは 3.90m である。基準階略伏図を図 2、略軸組図を図 3、各部材(柱、梁、耐震壁)の断面を表 1~3 にそれぞれ示す。X 方向は純フレーム構造で 5 ス パン(スパン長 6m)、Y 方向は連層耐震壁が X2、X5 通 りの Y3-Y4 間に 2 か所配してある壁フレーム構造で 3 スパン(スパン長 8m) である。柱、梁は CES 造、壁は 鉄筋コンクリート造で、スラブはコンクリートスラブで ある。表4には建物の1次固有周期、剛性率の最小値、 偏心率の最大値を示す。偏心はなく接合部せん断余裕度 (cQpu/cQbu: cQpu および cQbu は接合部パネルせん断 終局強度および梁曲げ終局強度を柱せん断力に換算した 値)は全て1以上であり、梁降伏型の建物となっている。

A Study on the Equivalent Single-degree-of-freedom System Response of CES Structure with Different Shear Strength of Beam-to-column Joints

		柱		梁								
			С		GX							
階	Fc	В×D	鉄骨	B×D	鉄骨							
RF	I	I	-									
13					$H-700 \times 300 \times 9 \times 16$							
12	20	800×800	$H-600 \times 300 \times 9 \times 22$									
11	30				$H_{-700} \times 200 \times 0 \times 10$							
10					11 /00 ~ 300 ~ 3 ~ 13							
9			$H-650 \times 350 \times 9 \times 19$	500 × 000	H-700 × 300 × 12 × 19							
8	22	850 × 850	850 × 850 H-650 × 350 × 9 × 25	850 × 850	850 × 850	850 × 850	050 × 050				500 × 900	
7	33											
6						$H-650 \times 350 \times 9 \times 25$		11 700 × 200 × 10 × 00				
5					H=700 × 300 × 12 × 22							
4	l I		11 700 × 400 × 0 × 00									
3	36	000 × 000	H-700 × 400 × 9 × 22									
2		900 × 900	900 × 900	500 × 1000	H-800 × 300 × 12 × 22							
1			n=/00 ^ 400 × 10 × 20	-	-							

表1 柱及び梁の断面表

表 2	梁の	断面表

	采					
		GY1	GY2			
階	В×D	鉄骨	B×D	鉄骨		
RF 13		$H-700 \times 300 \times 9 \times 16$		H-700 × 300 × 9 × 16		
12		$H_{-700} \times 200 \times 0 \times 10$				
11		H=100 × 300 × 9 × 19				
10		$H-700\times300\times12\times22$	500 × 900	H-700 × 300 × 9 × 19		
9	500 × 900					
8	300 × 300		000 × 000			
7		$H-700 \times 300 \times 12 \times 25$		H-700 × 300 × 12 × 22		
6						
5						
4		H-700 × 300 × 12 × 18		$H-700 \times 300 \times 12 \times 25$		
3						
2	500 × 1000	H-800 × 300 × 12 × 22	500 × 1000	H-800 × 300 × 12 × 22		
1	_	_	_	_		

表 3	耐震壁の断面表

符号	EW18	EW18 EW20		EW22 EW25	
壁厚	180	200	220	250	300
配筋	D13@200 ダブル	D13@150 ダブル	D13@100 ダブル	D16@150 ダブル	D19@175 ダブル
供来	11-10 開始	0-10歴史	5 7 Rtb	0 - 4 時比	1 - 0 階比

表4 1次固有周期、剛性率、偏心率

	X方向	Y方向
1次固有周期(s)	1.045	0.859
剛性率	0.742(5階)	0.766(8階)
偏心率	0	0

4.解析概要

4.1 モデル化及び解析方法

解析モデルには、部材を線材置換し剛床を仮定した立 体骨組モデルを用いた。立体骨組モデルの梁は単軸バネ で曲げとせん断をモデル化し、軸方向に関して剛床仮定 により変形しないものとしている。柱および耐震壁のモ デルについては MS(Multi Spring) モデルで軸方向と曲げ のモデル化を行い、単軸せん断バネでせん断のモデル化 を行った。なお、MS モデルの抵抗ヒンジ長さは柱せい D の1/2とした。柱梁接合部のモデル化に関して検討を行う ため、柱梁接合部を剛域としてモデル化したものと、柱 梁接合部に仕口パネルを設け、評価法に基づいて復元力 特性を計算しモデル化したものを作成した。部材長さは 剛域モデルの場合と仕口パネルモデルの場合とで同じに した。本研究では、弾塑性1次モード比例の外力分布を 与える MAP(Modal Adaptive Pushover)解析 ⁹を行う。なお、 MAP 解析は最大層間変形角が Rmax=0.02rad に達した時点 で終了した。

4.2 解析ケース

剛域モデルを Model-R、仕口パネルモデルを Model-PT(X 方向における十字形接合部のせん断余裕度の最小値 1.1 に相当する)とする。さらに、接合部せん断余裕度の影 響を検討するため、Model-PT の X 方向における十字形接 合部のせん断余裕度の最小値が 1.0、1.2、1.3、1.4、1.5 程 度になるように全接合部の耐力及び剛性を一律に変更し たモデルを作成し、それぞれ Model-m10、Model-m12、 Model-m13、Model-m14、Model-m15 とした。各モデルの 接合部せん断余裕度を表 5 に、各階の十字形接合部のせ ん断余裕度を図 4 に示す。6~8 階の接合部せん断余裕度が その他の階に比べて小さくなっている。

5.解析結果と考察

5.1 柱梁接合部のモデル化による違い

MAP 解析によって得られた Model-R、Model-PT の層せ ん断カー層間変形角の関係の比較を図 5 に、層せん断力 の分布と層間変形角の分布の比較を図 6 に示す。層せん 断力は 11~13 階において X 方向、Y 方向共に Model-R よ りも Model-PT の方が大きかった。X 方向の層間変形角は 6~13 階において Model-PT の方が Model-R よりも大きい が 1~5 階においては逆転している。Y 方向の層間変形角 は Model-R よりも Model-PT の方が各層で大きかった。接 合部を仕口パネルでモデル化したことにより Model-PT で は、Model-R に比べると接合部が変形し各層に変形が分散 したため各層の変形の差が小さくなった。剛性について は、ひび割れから降伏にかけて Model-R より Model-PT の 方が小さく、その差は Y 方向より X 方向で大きかった。

Model-R、Model-PT のヒンジ図を図 7、8 に示す。最大 層間変形角 Rmax=0.02rad の時点で Y3 通り、X1 通り共に Model-PT では、十字形接合部に接続する梁で降伏が発生 せず、Model-R に比べて梁の曲げ降伏の数が全体的に減少 した。Model-PT では十字形接合部においてせん断ひび割 れが生じたが、せん断降伏は生じなかった。

5.2 接合部せん断余裕度による違い

各モデルの代表荷重(₁Sa)と代表変位(₁Sd)の関係を図 9 に示す。₁Sa と₁Sd は文献 9)に従って算定した。X 方向、 Y 方向共に Model-R の方が Model-PT(m11)よりも剛性と耐 力が大きくその差は X 方向の方が大きかった。X 方向、Y 方向共に接合部せん断余裕度が大きくなると剛性と耐力 が Model-R に近づいていった。また、各モデルの柱梁接 合部(X2Y1、6 階)の復元力特性の比較を図 10 に示す。各 モデルの解析終了時の塑性率は 0.887(Model-m10)から 0.619(Model-m15)と接合部せん断余裕度が大きくなるにつ れ小さくなった。

各モデルの代表荷重及び等価剛性($_1Sa/_1Sd$)を Model-R の 代表荷重及び等価剛性でそれぞれ除したものと接合部せ ん断余裕度との関係を図 11、12 に示す。どちらも X 方向 では $_1Sd=20$ 、30、40cm、Y 方向では $_1Sd=20$ 、30、40、 50cm のケースでの値を示している。代表荷重及び等価剛 性は、両方向共に接合部せん断余裕度が大きくなるにつ れ全てのケースで 1 に近づき Model-R の値に近くなった。 X 方向で $_1Sd=20$ cm のケースで余裕度 1.0 のモデルは Model-R に比べて 20%程度下がり、 $_1Sd=40$ cm のケースで 余裕度 1.5 のモデルは Model-R に比べて 5%程度下がった。 また、Y 方向では、いずれも 5%以内であった。

(a) Y3 通り (X 方向)
(b) X1 通り (Y 方向)
図 7 Model-R ヒンジ図 (Rmax=0.02rad)

図 10 柱梁接合部の復元力特性の比較 ^{1.1} 1.05 ×方向 1.05 ×方向 1.05

各モデルの応答値と等価周期 表 6

		入刀円			门门间			
余裕度	₁Sa	1Sd	T _e (s)	余裕度	₁Sa	₁Sd	$T_e(s)$	
1.0	337.9	28.0	1.535	1.0	517.2	24.3	1.178	
1.1	343.0	28.0	1.532	1.1	519.1	24.3	1.176	
1.2	349.3	28.0	1.523	1.2	520.3	24.2	1.169	
1.3	355.7	27.9	1.518	1.3	520.5	24.0	1.162	
1.4	359.7	27.8	1.509	1.4	520.7	24.0	1.159	
1.5	364.9	27.7	1.502	1.5	521.6	23.9	1.157	
Model-R	413.6	26.3	1.371	Model-R	522.5	23.5	1.131	

図 15 Model-R に対する応答値 iSd の関係

6.応答スペクトル

図 13、14 に Model-R、Model-PT の応答スペクトル法¹⁰⁾ による等価1自由度系の応答値を、表6に各モデルの応 答値と応答時の等価周期(T_e)を示す。応答値は X 方向、Y 方向共に Model-PT(余裕度 1.1)は Model-R よりも代表変位 と等価周期は大きくなり、代表荷重は小さくなった。ま

た、接合部せん断余裕度が大きくなると X 方向、Y 方向 共に代表変位は小さくなり、代表荷重は大きくなった。 しかし、代表変位は、余裕度 1.5 のモデルの時は 1Sd=27.7cm、余裕度 1.0 のモデルの時は 1Sd=28.0cm であ り、接合部せん断余裕度が 1.0 から 1.5 の範囲では、大き な差は生じなかった。

各モデルの X 方向及び Y 方向の代表変位を、Model-R の代表変位で除したものと接合部せん断余裕度との関係 を図 15 に示す。X 方向では代表変位が Model-R に比べて 5~6.5% 増加した。Y 方向では代表変位が Model-R に比べ て 2~3.4% 増加した。X 方向及び Y 方向共に接合部せん断 余裕度が大きくなる程、代表変位の増加は小さくなった。 また、Y 方向には連層耐震壁があるため、X 方向に比べて 代表変位の増加が小さかった。

7.まとめ

接合部せん断余裕度を変化させたモデルの荷重増分解 析及び等価1 自由度系の応答値の算定を行い接合部せん 断余裕度に着目して検討した。

- 1) 仕口パネルモデルの代表荷重と代表変位は Model-R に比べて、X 方向では 5~20%程度、Y 方向では 1~ 5%程度小さく、接合部せん断余裕度が大きくなる程、 Model-R の値に近くなった。
- 2) Model-PT の等価1自由度系応答値は Model-R に比べ て代表変位が大きくなり、代表荷重が小さくなった。
- 仕口パネルモデルの等価1自由度系応答値に関して、 3) 代表変位は Model-R に比べて X 方向では 5~6.5%、Y 方向では 2~3.4% 増加し、接合部せん断余裕度が大き くなる程 Model-R の値に近づいたが、接合部せん断 余裕度による大きな違いはなかった。

参考文献

- 1) 倉本洋: 今伝えたいトピックス CES 合成構造システム、建築雑 誌、Vol.120、No.1535、pp.34-35、2005.7
- 日本建築学会:2013 年度日本建築学会大会(北海道)構造部門 2) (SCCS) PD 資料「CES 造建築物の構造性能評価指針(案)の制 定に向けて」、67pp、2013.8
- 3) 井上翔、秋田知芳、稲井栄一: 試設計建物を用いた CES 構造性能 評価法の適用性に関する研究、日本建築中国支部研究報告集、第 38巻、pp.249-252、2015.3
- 4) 仲野叶子、秋田知芳、稲井栄一: 柱梁接合部のモデル化が CES 造 建物の耐震性能に及ぼす影響に関する研究、日本建築中国支部研 究報告集、第 39 巻、pp.213-216、2016.3
- 5) 松井智哉、倉本洋: CES 柱梁接合部の構造性能に及ぼす作用軸力 の影響、日本建築学会構造系論文集、第 663 号、pp.1025-1031、 2011.5
- 6) 鈴木卓、松井智哉、倉本洋: 壁縦筋の定着方法の異なる CES 造連 層耐震壁の非線形 FEM 解析、日本建築学会構造系論文集、第666 号、pp.1533-1540、2011.8
- 7) 石釣吉、牧元祐太、Juan Jose CASTRO、松井智哉、倉本洋:H型 鉄骨内蔵 CES 柱の変形能力評価に関する研究、日本建築学会構 造系論文集、第 682 号、pp.1977-1982、2012.12
- 8) 今井琢也、松風友哉、鈴木卓、倉本洋:CES 造建築物の地震応答 評価に関する研究(その1、その2)、日本建築学会大会学術講演 梗概集、pp.1325-1328、2015.9
- 9) 倉本洋:多層建築物における等価1自由度系の地震応答特性と高 次モード応答の予測、日本建築学会構造系論文集、第 580 号、 pp.61-68, 2004.6
- 10) 倉本洋、勅使川原正臣、小鹿紀英、五十田博:多層建築物の等価 1自由度系縮約法と地震応答予測精度、日本建築学会構造系論文 集、第 546 号、pp.79-85、2001.8

- *1山口大学工学部感性デザイン工学科 学部生
- *2山口大学大学院創成科学研究科講師 博士 (工学)
- *3山口大学大学院創成科学研究科教授 博士 (工学)
- Student, Dept. of Perceptual Sciences and Design Eng., Faculty of Eng., Yamaguchi Univ.
- Lecturer, Graduate School of Sciences and Technology for Innovation, Yamaguchi Univ. Dr. Eng.

Prof, Graduate School of Sciences and Technology for Innovation, Yamaguchi Univ. Dr. Eng.