解析モデルに応じた基礎構造部材の応力変動に関する研究 (3 階建て RC 造学校建物を用いた検討)

鉄筋コンクリート造	基礎構造部材	荷重増分解析	準会員	○大橋未奈*1	準会員	吉本ナル*1
解析モデルカテゴリー	一体モデル	単杭モデル	正会員	津森崇行*2	正会員	秋田知芳*3
			正会員	稻井栄一*4		

1.はじめに

2011 年東北地方太平洋沖地震において、杭基礎に被害を 受けた建物が多く見られた^{1),2)}。現行の法基準では上部構造 は大地震に対する設計が義務付けられているのに対し、下部 構造は大地震時の安全性の検討が規定されていない³⁾。しか し、杭基礎に被害が生じると建物の継続使用が困難になるた め、学校建築など避難場所となる建物で杭基礎の被害を防ぐ ことが必要である。そのため今後は杭基礎についても大地震 に対する設計が必要になるものと考えられる⁴。

建築物の耐震設計を行う場合、上部構造、基礎構造部材、 地盤までを含めて一体として扱うことが望ましいと考えら れるが、一般に広く行われている状況ではない。『鉄筋コン クリート基礎構造部材の耐震設計指針(案)』⁵(以下指針(案) と略記)では基礎構造部材の設計用応力を求めるための解析 モデルが4つ示されている。上部構造と下部構造が分離して いるモデルでは、相互作用の影響が考慮されていないため上 部構造と下部構造を一体としたモデルに比べて応答値が小 さくなる場合があり設計の際には応答値を割増すことが提 案されている。解析モデルの違いによって、基礎構造部材に 発生する応力がどの程度変動するかについては、指針(案)で は伊藤による検討[®]が示されているのみで検討例が非常に

少ない。そこで本研究では、単杭モデルと一体解析モデルの 荷重増分解析を行い杭に生じる応力を比較して、基礎構造部 材の解析モデルの違いによる応力の変動について検討する。

2. 基礎構造部材の耐震設計

指針(案)では基礎構造部材の設計応力を求めるための解 析モデルは、図1に示すように以下の4つの「解析モデル カテゴリー」に分類されている。

- ・解析モデルカテゴリー①:上部構造・基礎構造一体,多層 地盤モデル(または一体型という)
- ・解析モデルカテゴリー②:上部構造・基礎構造分離,多層 地盤モデル(または分離型1という)
- ・解析モデルカテゴリー③:上部構造・基礎構造分離,一単
 杭・多層地盤モデル(または分離型2という)
- ・解析モデルカテゴリー④:上部構造・構造基礎分離,単杭・ 一様地盤モデル(または分離型3という)

ー体型は最も適用できる範囲が広い上、相互作用の影響が 考慮できるメリットがあるが計算が複雑で難しい。分離型1、 分離型2、分離型3の順で適用範囲が限定的になると共に考 慮できる要素も限られてくる一方で、計算の手間は軽減され る。指針(案)で示されている応力の割増し係数を表1に示す。 割り増し係数は1.0~2.0であり、変動軸力の大きさで使い分 けることが示されている。

モデル	検討部位	曲げ	せん断	
	杭頭	1.0	1.5	
分離型1	持由明如	2.0	$(1.0)^{*3}$	
	似中间部	$(1.0)^{*_1}$		
	右面	2.0		
分離型2	小山頭	$(1.0)^2$	1.5	
	拉山胆如	2.0	$(1.0)^{*4}$	
	你中间部	$(1.0)^{*1}$		

表1指針(案)における割り増し係数

*1杭中間部の検定において、杭頭部と杭中間部の大きいほうの 設計用曲げモーメントに作用する場合

*2軸力の変動の影響が、杭頭回転ばねの曲げモーメント回転角 関係に反映できている場合、もしくは設計用地震力より杭に 作用する地震時変動軸力が長期軸 力の20%以内である場合 *3設計用地震力により杭に作用する地震時変動軸力が長期軸力

の50%以下である場合 *4設計用地震力により杭に作用する地震時変動軸力が長期軸力 の20%以下である場合

A Study on the Stress fluctuation of the Foundation Structure Members According to the Analysis Model (Examination of 3-story RC School Building)

OHASHI Mina, YOSIMOTO Naru, TUMORI Takayuki, AKITA Tomofusa and INAI Eiichi

3. 解析計画

3.1 検討対象建物概要

解析対象は、2011 年東北地方太平洋沖地震の被害に遭っ た学校建物で、杭基礎を有する 3 階建ての RC 造建物であ る。地下階はなく、桁行方向(以下 X 方向と呼ぶ)が11 ス パンのラーメン構造(一部耐震壁)、梁間方向(以下 Y 方向 と呼ぶ)が5 スパンの耐震壁を含むラーメン構造である。本 建物に配置されている壁の大半には開口が設けられている。 図 2 に杭伏図、図 3 に柱状図を示す。基礎は杭基礎で、杭に は PHC 杭(B 種)400 ¢ が用いられており、現行の技術基準 に従った耐震設計(許容応力度設計)が行われていた。杭長 は 1~4 通りが13m(48 本)、5~9 通りが14m(71 本)、10~12 通りが16m(36 本)となっており、計155 本である。地盤 は第 2 種地盤である。

3.2 解析モデル

図4に単杭モデルの概略図を示す。杭は100cm ずつの要素に分割してモデル化している。杭断面は標準的なPHC 杭 (φ400)を参考にし、杭断面を36分割したFiber モデルで モデル化した。杭の要素の節点に水平地盤バネを取り付け、 杭先端をピン支持とした。なお、本モデルでは杭長は地表面 から杭先端までの長さとした。

図 5 に水平地盤バネの骨格曲線のモデル化の考え方を示 す。水平地盤バネは、参考文献⁷に基づいて水平方向の極限 地盤反力 P_{max} を求め、水平地盤反力 P と水平変位 d の関係 を表す曲線を描き、d=0.1m のときの地盤反力 F_u とし、 $1/3F_u$ となる点を第1折れ点の地盤反力 F_c とする。また、第2折れ 点後の剛性を初期剛性の 1/1000 として、面積が等価となる 点を第2折れ点とし、そのときの地盤反力を塑性地盤反力 F_y とした。

単杭モデルは、検討対象建物の杭基礎に従って 13、14、 16mの3種類を作成した。モデル上の杭頭から杭先端までの 長さは、13mの杭が11.29m、14mの杭が12.29m、16mの杭 が14.29mとなっている。それぞれの長さのモデルに一定の 軸力(-500、0、500、1000、2000、圧縮側は正、引張側は負、 単位は全て kN)をかけ、基礎梁位置に上部構造の慣性力に 相当する水平力を与えて荷重増分解析を行った。解析は杭が 概ね最大耐力を発揮する時点で終了した。

図6に一体モデルの概略図を示す。解析モデルは建物上部 (基礎梁含む)をモデル化した立体骨組とし、柱部材および 梁部材は線材に置換したフレームモデルとしている。梁部材 は材端ばねモデルとし、曲げに対するスケルトンカーブは曲 げひび割れ、曲げ降伏を考慮したトリリニア型とする。柱部 材は曲げと軸に対してはマルチスプリングモデル、せん断に 対しては材端ばねモデルとしている。壁部材は、耐力壁をエ レメント置換した材端ばねモデル、その他の壁は自重のみを 考慮する。ただしその他の壁は側ばりの腰壁・垂壁、側柱の 袖壁に置換し、側ばりおよび側柱の剛性と耐力に考慮する。 なおここでは開口周比 0.4 以下の 壁を耐力壁としている。 スラブは 1 階が土間であることから、2 階と 3 階のみ剛床 と仮定している。 荷重増分解析に用いる水平力分布は Ai 分布に基づいて設定した。

4. 解析結果と考察

4.1 杭頭せん断力―杭頭水平変位関係

図 7 に単杭モデルの解析から得られた杭頭せん断力と杭 頭水平変位の関係を示す。図中の●は、杭頭降伏時を表し、 ■が大地震時(C_B=0.3)を示している。杭頭降伏時は、杭頭に おいて最も外側の鉄筋が降伏した時のステップとする。杭頭 降伏時の杭頭せん断力は、軸力 2000kN のとき 13m の杭でお よそ 270kN、14m の杭でおよそ 380kN、16m の杭でおよそ 380kN となった。杭頭水平変位は、13m の杭でおよそ 47mm、 14m の杭でおよそ 24mm、16m の杭でおよそ 26mm となっ た。また、いずれの杭においても圧縮軸力を大きくするにつ れてせん断剛性は上昇した。

4.2 杭頭降伏時の検討

図8に杭頭降伏時の杭頭曲げモーメント分布図を示す。。 図中の●は単杭モデルを表し■が一体モデルの結果を示し ている。単杭モデルでは、曲げモーメントは圧縮軸力が大き い方が大きくなった。曲げモーメントの値は13mの杭では地 表面からの深度が5mで、14mの杭では2m~4m、16mの杭で は4mが最大となり、13mの杭は8mで、他の2本の杭は7m 以深でほぼ0になっている。また、曲げモーメントは一体モ デルと軸力が500kNの単杭モデルとほぼ同じ値を示してお り杭頭降伏時において一体モデルと単杭モデルの整合性が 確認できた。

図9に増分解析開始、終了時の一体モデルにおけるA ~D 通りの各杭頭に作用する軸力を示す。軸力の値は解析開始時 でおよそ250kN~350kN、 $C_B=0.3$ 時でおよそ200kN~400kN、 解析終了時でおよそ200kN~500kN(引張り軸力を除く)で ある。AB の1通り8通り、D の2通り8通りは建物の壁力や 吹き抜けの影響により引張り軸力が生じている。

降伏時における一体モデルと単杭モデルの整合性および 一体モデルから得られた杭頭の軸力の値から、4.3節の検討 では軸力を 500kN とした単杭モデルの解析結果を使用する。 4.3 杭の応力変動

図 10 にC_B=0.3 時の一体モデル、単杭モデルにおける杭 頭曲げモーメント分布図および杭頭せん断力図を示す。一体 モデルの値は各杭の本数で除して杭 1 本にかかる曲げモー メントとせん断力を示す。単杭モデルにおける基礎梁位置の 水平力は、一体モデルのおけるC_B=0.3 に相当する杭1本

図9 杭1本あたりにかかる軸力

図 10 C_B=0.3 杭の曲げモーメント分布図およびせん断力図

の水平力(基礎梁位置の水平力を杭本数で除して換算)とし ている。

杭頭では一体モデルと単杭モデルの曲げモーメントの値 がほぼ同じになっている。杭中間部では単杭モデルに対して 一体モデルが約2倍大きい値になっている。一体モデルの曲 げモーメントおよびせん断力を単杭モデルの値で割った比 率を表2に示す。単杭モデルの曲げモーメントに対する一体 モデルの曲げモーメントの比率は杭頭で1.1、杭中間部で1.5 ~2.1 となっている。表1で示した指針(案)の分離型2にお ける割り増し係数と比べると、杭頭では軸力変動が小さい場 合の値(1.0)とほぼ同じとなり、杭中間部では最大値が概ね 示されている値(2.0)と対応した。単杭モデルのせん断力に 対する一体モデルのせん断力の比率は杭頭で1.1、杭中間部 で1.0~2.0であり、指針(案)と比べると杭頭では変動軸力が 小さい場合の値(1.0)とほぼ同じとなったが、杭中間部では 示されている値(1.5)を上回る結果となった。

5. まとめ

解析モデルカテゴリーの違いによる応答値の変動を検討 するため、単杭モデル、一体モデルの荷重増分解析を実施し た。杭の応力に着目して検討し、以下の知見が得られた。 (1)単杭モデルの曲げモーメントに対する一体モデルの曲げ

モーメントの比率は杭頭で1.1、杭中間部で1.5~2.1 であ

- り、指針(案)の割り増し係数の値と概ね対応した。
- (2) 単杭モデルのせん断力に対する一体モデルのせん断力 の比率は杭頭で1.1、杭中間部で1.0~2.0 であり、指針(案) の値の割り増し係数の値を上回る結果となった。

今後は上部構造・基礎構造分離,多層地盤モデルを対象と した検討が必要である。

参考文献

- 日本建築学会:2011年東北地方太平洋沖地震被災調査速報、 577pp.、2011.7
- 日本建築学会文教施設委員会耐震性能等小委員会:文教施設の耐震 性能等に関する調査研究報告書、570pp.、2012.3
- 3) 国土交通省住宅局建築指導課ほか:建築物の高層関係技術基準解説 書、pp.57-67、2007.8
- 4) 日本コンクリート工学会:東日本大震災に関する特別委員会報告書、 pp.359-360、2013.3
- 5) 日本建築学会:鉄筋コンクリート基礎構造部材の耐震設計指針(案)・ 同解説、pp.100-103、2017.3
- 6) 伊藤央:ばらつきを考慮した基礎構造部材の応答評価、日本建築学 会鉄筋コンクリート基礎構造部材の耐震設計 pp.35-46、2010.9
- 7) 間瀬辰也、中井正一:単杭の杭周地盤ばねの評価法に関する検討、 日本建築学会構造系論文集、第77巻第680号、pp.1527-1535、 2012.10

*1山口大学工学部感性デザイン工学科 学部生 *2山口大学大学院創成科学研究科 大学院生

*4山口大学大学院創成科学研究科教授 博士 (工学)

Student, Dept. of Perceptual Sciences and Design Eng., Faculty of Eng., Yamaguchi Univ. Graduate Student, Graduate School of Sciences and Technology for Innovation, Yamaguchi Univ. Dr. Eng. Lecturer, Graduate School of Sciences and Technology for Innovation, Yamaguchi Univ., Dr. Eng. Prof, Graduate School of Sciences and Technology for Innovation, Yamaguchi Univ., Dr. Eng.

^{*3}山口大学大学院創成科学研究科講師 博士 (工学)