RC 造建築物の耐震性能評価における杭基礎解析モデルに関する研究 (その7 適用条件に関する検討)

鉄筋コンクリート造	一体モデル	分離モデル
保有水平耐力計算	崩壊形	基礎梁

1. はじめに

著者らは一体モデルと分離モデルを用いた鉄筋コンク リート造(以下, RC 造と略記) 杭基礎建築物の耐震性能 評価について研究している。既報(その5,その6)^{1),2)}で は、中高層 RC 造の保有水平耐力計算において杭頭曲げが 作用した場合に,想定した上部構造の崩壊形を実現でき る基礎梁の耐力を評価し,基礎周り部材の耐力指標を提 案した。本報(その7)では,部材耐力や地盤の水平剛性 などをパラメータとした部分架構モデルを対象に追加し て、上部構造の分離モデルの適用条件について考察する。

2. 解析計画

2.1 解析対象および解析モデル

解析対象骨組は、杭基礎を有する3階建から14階建の RC造建築物を想定した、部分架構モデルである(図-1)。地盤は(その5)¹⁾に示した第二種地盤とし、杭は場 所打ちコンクリート杭(杭先端GL-20m)とする。それぞ れのモデルに対して直杭と拡底杭の2種類の杭を設定す る。いずれの杭も底部径は負担する長期軸力に対する応 力が1800~2000kN/m²程度となるよう設定し、拡底杭の 軸部径は底部径の2/3程度とする(表-1)。骨組の各部 材、地盤ばねのモデル化方法は(その5)¹⁾と同様とする。

2.2 部材および骨組の耐力指標

本研究では(その 5)¹⁾と同様,基礎梁の曲げ耐力の大きさを表す曲げ耐力指標(α)を式(1)で,1階柱,杭, 基礎梁の耐力バランスに着目した指標値 a,b を式(2)および(3)で定義する。基礎梁の変動ケースは、 α を変えて設定する。また、上部構造の耐力指標として相当 C_B値を式 (4)で定義する。相当 C_Bは全体変形角(R_T)が 1/67 時におけるベースシア係数である。R_Tとは上部構造に作用する水平力の重心位置に相当する床の水平変形を、その床の高さで除した変形角である。なお、式中の記号については(その 5)¹⁾を参照されたい。

 $\begin{aligned} &\alpha = {}_{FG}M_{u} / {}_{FG}M_{E1} + {}_{p}M_{E1} / 2) & \cdots(1) \\ &a = \sum_{FG}M_{u} / {}_{C}M_{u} \cdots(2) & b = \sum_{FG}M_{u} / {}_{C}M_{u} + {}_{p}M) \cdots(3) \\ &\text{相当} C_{B} = (R_{T}1/67 \text{Fb}C_{B}) / (- \% 2 \text{Here} C_{B} \times 5) & \cdots(4) \\ &\text{横軸に耐力指標 a, 縦軸に耐力指標 b をとって対象骨組} \\ &\text{の耐力バランスを模式的に図-2に示す。このa-b 関係} \\ &\text{図に示される領域により, 杭頭曲げを考慮するモデルと} \\ & 考慮しないモデルにおいて最下層の崩壊形が異なる領域 \\ &({\rm 領域 II}) を示すことが出来る。なお, 基礎梁の耐力指 \end{aligned}$

A Study on Pile Foundation Model for Seismic Performance Evaluation of RC Buildings (Part 7. Examination of Applicable Condition)

正会員	○秋田	知芳*1	正会員	和泉	信之*2

標 α 及び耐力指標 a は現行法の構造設計時に算出可能な値 である。

2.3 解析ケース

既往の研究³⁾で用いた 3, 6, 10, 12, 14 階建の 5 棟の 直杭モデルと,上部構造断面は同じで杭を拡底杭とした 拡底杭モデルを作成する。これらのモデルを基に上部構 造耐力(相当 C_B 値)を 0.35, 0.40, 0.45 の 3 通りに変え たモデルに対して,それぞれ基礎梁の曲げ耐力(α)を 1.2~2.2 まで適宜変えたケースを設定する(計 230 ケー ス)。また,液状化等で表層地盤の水平剛性が 0.5 倍,0.1 倍に低減した場合として,水平剛性低減ケース(計 460 ケース)も加えて設定する。なお,本研究では柱脚降伏 するケース(領域 I および II)を対象とする。

3. 解析結果

図-3に標準的な断面を設定した基本となるケースの ベースシア係数(C_B)と全体変形角(R_T)の関係を示す。 R_T が1/67時の C_B は0.31(14階建)~0.40(3階建)で, 梁曲げ降伏型の全体崩壊形がほぼ形成されている。

AKITA Tomofusa and IZUMI Nobuyuki

4.1 基礎梁の耐力指標 α と耐力指標 b

図-4に α と耐力指標 b の関係を示す。 α が増大する に伴い耐力指標 b は増大する。相当 CBが 0.35 のケースで は耐力指標 b が 1.0 を上回るαは 1.7 以上, 相当 C_B が 0.40 のケースでは 1.9 以上, 相当 C_Bが 0.45 のケースでは 2.0 以上となっている。上部構造の耐力が大きくなるほど、 崩壊メカニズム形成時の杭頭曲げモーメントも増加する ため、基礎梁の必要耐力も増加することが分かる。

4.2 保有水平耐力と基礎梁の耐力指標α

図-5に保有水平耐力比と α の関係を示す。ここで、 保有水平耐力比とは一体モデルでの相当 C_Bを上部分離モ デルでの相当 C_Bで除した値とする。上部構造最下層の崩 壊形が計画通り柱脚降伏となる場合には,保有水平耐力 比は 1.0 となる。このときの α の値は 2.0 以上である。

4.3 保有水平耐力と耐力指標 a

図-6に保有水平耐力比と耐力指標 a の関係を表す。耐 力指標 a には杭頭曲げを直接用いていないが、本解析の範 囲では a の値は 1.8 以上(地盤の水平剛性が低下する場合 は24以上)であると保有水平耐力比は概ね10である。

4.4 α-aの関係と崩壊形成パターン

図-7にαと耐力指標 a の関係を示す。αおよび耐力 指標 a が大きくなるほど柱脚降伏になる傾向にある。 α が 1.7 未満, a が 1.8 未満では杭応力を考慮する場合最下層の 崩壊形が変わる可能性が高いため、一体解析等の詳細な 検討を行うことが望ましい。また、αが 1.7~2.0 程度で は, 基礎梁の余裕度・上部構造耐力・地盤の条件などで 上部構造最下層の崩壊形が変わらない場合と変わる場合 があるので, 分離モデルを用いて保有水平耐力の確認を 行う場合には十分な考慮が必要である。

5. まとめ

本研究の範囲内ではあるが、以下の知見を得た。

- 1) 相当 C_Bが 0.35 で a が 1.7 以上, 相当 C_Bが 0.40 で a が 1.9 以上,相当 C_Bが 0.45 で α が 2.0 以上では, 杭頭曲 げの作用による分離モデルの崩壊形や保有水平耐力へ の影響は小さい。
- 2) 上記と同様となる耐力指標 a の目安は 1.8 以上(地盤) の水平剛性が低下する場合は2.4以上)である。
- 3) αが 1.7 未満, あるいは耐力指標 a が 1.6 未満では最下 層の崩壊形が変わる可能性が高いため、一体解析等の 詳細な検討を行うことが望ましい。
- 4) αが 1.7~2.0 程度では、分離モデルを用いて保有水平 耐力の確認を行う場合には十分な考慮が必要である。 基礎梁降伏先行あるいは杭降伏先行の崩壊形における

保有水平耐力計算は今後の課題である。

謝辞 本報の作成にあたり元千葉大学和泉研究室大学院生の棒田悠太氏に多大なる 協力を頂きました。ここに記して感謝の意を表します。

- 参考文献 1) 坂本雅敏ほか: RC 造建築物の耐震性法評価における杭基礎解析モデルに関 する研究(その5 基礎梁の耐力指標),日本建築学会大会学術講演梗概集, C-2 分冊, pp.713-714, 2012.9
- 2) 棒田悠太ほか: RC 造建築物の耐震性法評価における杭基礎解析モデルに関 する研究(その 6 杭頭降伏を考慮した基礎梁の耐力指標), 日本建築学会 大会学術講演梗概集, C-2 分冊, pp.629-630, 2013.8 坂本雅敏ほか: RC 造杭基礎建築物の保有水平耐力計算に用いる上部モデ

*1山口大学大学院理工学研究科講師 博士 (工学) *2千葉大学大学院工学研究科 教授 博士 (工学)

*1 Lecture, Graduate Sch. of Sci. and Eng., Yamaguchi Univ., Dr. Eng. *2 Prof., Dept. of Architecture, Chiba Univ., Dr. Eng.

³⁾ コンクリート工学会年次論文集, Vol.35, No.2, pp.13-18, 2012.7